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The basic equation describing radiation damping in nuclear magnetic resonance (NMR) is rewritten by
means of the reciprocity principle, to remove the dependence of the damping constant upon filling factor
– a parameter which is neither uniquely defined for easily measured. The new equation uses instead the
transceive efficiency, i.e. the peak amplitude of the radiofrequency B field in laboratory coordinates,
divided by the square root of the resistance of the detection coil, for which a simple and direct means
of measurement exists. We use the efficiency to define the intrinsic damping constant, i.e. that which
obtains when both probe and preamplifier are perfectly matched to the system impedance. For imperfect
matching of the preamp, it is shown that the damping constant varies with electrical distance to the
probe, and equations are given and simulations performed, to predict the distance dependence, which
(for lossless lines) is periodic modulo a half wavelength. Experimental measurements of the radiation-
damped free induction NMR signal of protons in neat water are performed at a static B field strength
of 14.1 T; and an intrinsic damping constant measured using the variable line method. For a sample of
5 mm diameter, in an inverse detection probe we measure an intrinsic damping constant of 204 s�1, cor-
responding to a damping linewidth of 65 Hz for small tip angles. The predicted intrinsic linewidth, based
upon three separate measurements of the efficiency, is 52.3 Hz, or 80% of the measured value.

� 2010 Elsevier Inc. All rights reserved.
1. Introduction

The damping of the transient signal in pulsed nuclear magnetic
resonance (NMR) – as the spins lose energy to the receiver – is
called radiation damping; it was first analyzed, a half century
ago [1], in the classic work of Bloembergen–Pound (BP), who wrote
the Bloch–Kirchhoff equations for the coupling of the nuclear mo-
ment to a tuned radiofrequency (RF) detection coil. The resultant
damping is essential to the formation of the NMR signal, and oc-
curs in every NMR experiment, although its contribution to the res-
onance linewidth is often masked by spin relaxation. The theory of
damping is therefore central to any discussion of sensitivity and
detection in NMR.

The subject has had varied applications, including non-linear
spin dynamics [2–7], two dimensional spectroscopy [8,9], the de-
sign of crafted radiofrequency pulses [10], and the NMR laser
[11,12]. Nonetheless, the original theory given by Bloembergen
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and Pound is still used, even though it no longer reflects a modern
view of NMR reception, and contains a problematic figure of merit
– the coil filling factor – introduced as a correction to Faraday’s law
when calculating the signal voltage. The characteristic damping
constant then contains the product of the coil filling factor and
the resonant Q (or quality factor), which together are taken as a
measure of the coil’s efficiency [13]. Although the filling factor is
neither uniquely defined nor easily measured, its use in the litera-
ture of damping has been virtually universal since its introduction.
We believe that a good case exists for its replacement, in the con-
text of an updated theory.

We will here show how to rewrite the main damping equation,
using the principle of reciprocity, to express the damping constant
in terms of a better defined and more readily measured quantity –
the transceive efficiency. (The quality factor, although it poses no
particular difficulties, will disappear in consequence.) We will also
take explicit account of the (often considerable) effects upon the
damping constant of variable reflectivity at the preamplifier, which
can be substantial, even at input return loss�6 dB. This will lead us
to a definition of an intrinsic damping constant, i.e. that which is
observed when preamplifier and probe are both perfectly matched
to a common system impedance – and also to a proposed method
for measuring the intrinsic damping, even when the preamp is
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Fig. 1. Circuit model for radiation damping. In 1A, the transduction mesh – the
receive coil, its resistance, and capacitors for tuning and impedance matching—
couples through a section of transmission line to the preamp. The drive voltage is
the emf from precession of the nuclear magnetization. In 1B, on the assumption of
perfect matching to the system impedance at both probe and preamp, the load
presented by the preamp is transformed to its series equivalent inside the
transduction mesh. For the stipulated correct matching, this effectively doubles
the resistance in the coil, as reflected the halving of the source-loaded quality (or Q)
factor, relative to the unloaded. The summation of tune and match capacitance is an
approximation valid for high Q, and therefore applicable to the present work. In 1C,
the matching at the probe is assumed perfect, but that at the preamp may deviate
from the system impedance. This changes the equivalent circuit of the transduction
mesh, causing a variable resistance R0 and a variable reactance iX to appear as series
elements.

162 Communication / Journal of Magnetic Resonance 206 (2010) 161–167
matched to some other impedance, which is in fact the common
case. We will show data which support the overall correctness
and accuracy of our approach.

Following Bloch [14], Bloembergen and Pound wrote the NMR
signal voltage by Faraday’s law, assuming the flux density to be
equal (within a constant) to the transverse magnetization Mt, and
obtaining the expression V = �gl0nAdMt/dt for a long solenoid
detection coil of n turns and aperture A. They used the filling factor,
defined as g =

R
M � H dV/M0 �

R
HdV, (where the H fields are those

due to a unit current in the coil) to compensate for the fact that the
coil is not fully immersed in sample. In their calculations for the
linewidth of water protons, they set g = 1; and the quantity is often
considered to measure the fraction of active antenna volume occu-
pied by sample [15,16]. Other workers have defined the filling fac-
tor as the ratio of magnetic field energy in the region occupied by
sample, to the total energy of the coil [17,18]; and values less than
0.1 are considered typical.

The modern theory of NMR reception uses the principle of rec-
iprocity [19–22], and treats the magnetization as the source of an
oscillatory B field whose time-varying flux is detected through re-
mote coil windows. Saddle coils [19] are widely used, the solenoid
having largely disappeared in contemporary practice. Furthermore,
reception in biomedical NMR was revolutionized by the develop-
ment of the array receiver [23], – which posits a collection of sim-
ple resonant loops, in close proximity, but electrically decoupled,
which receive signal created by an external transmitter producing
a homogeneous excitation over the volume of interest. Such situa-
tions require a theory in which the signal magnitude and phase are
sensitive to the local fields of individual receivers – a condition
readily met with application of the reciprocity principle, but less
obviously (if at all) tractable by the old canonical theory.

Now admittedly, the reciprocity principle is based upon the
assumption of linear media, and its application in magnetic reso-
nance might therefore appear limited to the regime of linear re-
sponse; but as we shall show in detail, the key formulas for NMR
reception depend only upon Faraday’s law, and are therefore valid
for any preparation of the magnetization, and particularly for any
deviation from equilibrium.

2. Theory

Although a general treatment of NMR reception includes circu-
lar as well as linear polarization [22,24] of the RF fields, only the
latter are of interest here. The principle of reciprocity [22] then
gives a simple form for the signal emf:Z

EðrÞ � ds ¼ ix0l0

Ic

Z
HðrÞ �MðrÞdV ð1Þ

where the line integral is taken around the coil winding, the volume
integral is over the sample, x0 is the Larmor frequency, E is the elec-
tric field due to the vector potential of the magnetization M(r), and
H(r) is the spatially varying magnetic field produced by peak current
Ic in the coil. Although harmonic time dependences are explicitly
omitted [25], we have assumed a negative time exponent for Max-
well’s equations. Also, although Eq. (1) is commonly called a reciproc-
ity formula, it can be derived without reference to the reciprocity
principle (see the Appendix A) by starting from the vector potential
A of a microscopic dipole, �(l0/4p)M dV �r(1/r), transforming the
resulting line integral for intercepted flux by means of the Biot-Savart
law and vector triple product, and finally integrating over sample
volume. Integral transformations of this type, e.g. l0

R
H(r) �

M(r) dV = �
R

A(r) � J(r) dV = � IU, are common [26], but the applica-
tion to NMR is aided by the assumption of filamentary currents.

We will assume that the input/output port of the NMR probe is
matched to present the system impedance (usually 50 X) to the
outside world, as is common in analytical NMR systems, and also
in many instances, for array antennas in medical imaging. Then
for an ensemble of spins, e.g. the protons in a milliliter of water,
undergoing Larmor precession following a nutation through the
angle #, the equation for balance of the Zeeman energy is [1]:

dE
dt
¼ M0VB0 sin#

d#
dt
; ð2Þ

assuming M0 has its thermal equilibrium value, and ignoring relax-
ation. Since the spins are losing energy, the time derivative of en-
ergy in (2) must be negative, and since the magnitudes of the
field and magnetization are positive, and the polar angle is assumed
to lie between 0 and p, then the time derivative d#/dt must be neg-
ative. That is, the trajectory of the magnetic moment must tend to
return it to an orientation parallel to the polarizing field.

Then the available power P(A), deliverable to a matched load
from an emf e with source (i.e. coil) resistance R, is just e2/4R;
and the total power dissipated in the coil and preamp (source plus
load) is twice the available power, per the circuit model of Fig. 1B,
with the preamplifier matched (as is the probe) to the system
impedance – a condition which will be relaxed subsequently. Also,
since the spins undergo many cycles of precession as they gradu-
ally lose Zeeman energy, the dissipation must be given as the
rms value. The energy balance is now expressed by

�dE
dt
¼ 2� PðAÞrms ¼ 1/2

e2

2R
¼ fx0M0 sin#VB1ð1Þg2

4R
; ð3Þ
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Fig. 2. Results of circuit calculations as described in the text and Appendix A. Above
(A), the dissipation scaling factor a, as a function of line length between
preamplifier and probe, for various values of the preamplifier return loss (�20
log10|r|), per the color key. Below (B), the solid lines give the total resistance
(intrinsic plus coupled, i.e. R + R0 , in Fig. 1C). The dashed lines give the coupled
reactive impedances (iX, cf Fig. 1C). Coupled into the probe circuit, per the circuit
model of Fig. 1C. The black lines give in both instances the result for perfect
matching of both preamp and probe. Note that the dissipation scaling assumes its
value for intrinsic damping, at two points, separated by a quarter wave, regardless
of the preamp mis-match.
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where the peak emf comes from (1), and the factor 1/2 is separated
out to emphasize the root mean square value of the power. Also
B1(1) is the peak value in the laboratory frame of the radiofrequency
B field (assumed uniform over the sample volume V) produced by
unit current in the coil, and R is the coil resistance, including the ef-
fects of coupling to the NMR sample, but excluding the coupling to
the load resistance presented by the receiver.

In the approximation of small nutation angles, this leads di-
rectly to the damping equation d#=dt ¼ �k#, with the damping
constant given by k ¼ cx0VM0f

2=4, where we introduce the trans-
ceive efficiency [27]

f ¼ B1ð1Þ=
ffiffiffi
R
p
¼ B1ðI0Þ=

ffiffiffiffiffiffi
2P
p

; ð4Þ

with P denoting the rms radiofrequency power absorbed by the
probe. The damping equation for arbitrary tip angle # is also easily
solved, to yield the familiar result of BP, but with the modified
damping constant: tan#=2 ¼ expð�ktÞ. Furthermore, although we
have based our derivation upon energy balance, the same result
may be gotten from a torque equation, with the correct sign of
the damping emf (for steady state) obtainable directly from the rec-
iprocity principle. We call this value of k, obtained for conditions of
perfect matching of all components to the system impedance, the
intrinsic damping constant. All of our experimental work is per-
formed under conditions of small nutations, in which case the
damping lineshape is Lorentzian.

We may also treat case of the preamplifier not matched to the
system impedance, and therefore presenting a partially reflective
(rather than absorptive) load to the probe. Refer to the circuit mod-
el of Fig. 1C. In this case the energy balance Eq. (3) becomes:

� dE
dt
¼ afx0M0 sin#VB1ð1Þg2

4R
; ð5Þ

where we introduce the dissipation scaling factor a, whose values
lie between zero and two, depending upon the coupled resistance
R0 and reactance iX, which in turn depend upon the impedance
mis-match at the preamplifier and the transformation induced by
the transmission line (cf Fig. 1C). Then it is easily seen that the
new damping constant (denoted by a prime), is just a times the
intrinsic damping constant: k0 = ak. Trivially, the damping linewidth
is just k0/p.

With reference to Fig. 1, a clearly must equal 2R/(R + R0), at its
extrema, where the input reflection coefficient at the coil-match-
ing reference plane lies on the meridian line of the Smith Chart.
Its values may be estimated or calculated numerically, depending
whether or not one has exact knowledge of the probe circuit; but
its upper and lower limits are established by intuition or inspec-
tion. When R0 and iX are both zero (e.g. an infinitely resistive pre-
amp at distance of quarter wave) then the probe tuning (for a
moderately high Q factor) is virtually undisturbed, and the total
dissipation approaches an upper limit of four times the available
power P(A), or twice that of Eq. (3); ergo the value of a is bounded
from above by two. In the opposite case, of very large R0 and/or iX,
the matching mesh is essentially open circuited, which causes (at
moderate to high Q values) a significant detuning of the probe.
The exact value of dissipation cannot then be known without cal-
culation, but it must always be positive (even though small) and
the scale factor is therefore bounded from below by zero.

In Fig. 2A are shown the results of a numerical simulation for
the model probe of Fig. 1, with an inductance of 100 nH, and a
resistance of 1 X, giving a as a function of line length between pre-
amp and probe, for varying degrees of impedance mis-match at the
preamp. (Matching of the probe is assumed near-perfect through-
out; details of the calculation are found in the Appendix A.) For the
preamp very well matched (return loss >50 dB) a assumes the con-
stant value of 1.0, (we assume a lossless line for simplicity.) For
moderately good matching, i.e. return loss of �14 dB, the possible
deviations are about ±20%; for �6 dB, ±45%, and so on. The value of
a is not usually known apriori, so that the scaling of the damping
constant is uncertain in any given measurement. Note in any case
the sinusoidal variation of a, which is a direct consequence of the
sinusoidal variation of 1/R0 (cf Appendix A.)

The curves show that, irrespective of mis-match, a assumes unit
value repeatedly, at intervals of a quarter wave, and furthermore
that the extrema of the deviations are symmetric about unity.
(The results are unchanged if the tank circuit is balanced by dis-
tributing the tune capacitance.) This immediately suggests a meth-
od for measuring the intrinsic damping constant: that is, insertion
of a series of calibrated transmission line sections, to vary the line
length in small increments over a half wave range. Once the max-
imum and minimum values of the damping are found (separated
by a quarter wave), the intrinsic value is just their average.

While the power calculations for a have been done from Kirch-
hoff’s equation, a simplified version is also possible, using the
equivalent single mesh impedance R + R0 + iX, of Fig. 1C. This
impedance, interesting in itself, is calculated by a continued frac-
tion expansion (per the Appendix A), and the results are shown
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in Fig. 2B. The coupled resistance is obtained from the plot by sub-
tracting a value of 1.0, which is the assumed value of the probe’s
own resistance. Then the power calculation may be done by Ohm’s
law inside the transformed reception mesh of the coil (taking prop-
er account of course of the coupled reactance and noting the coil’s
own inductance is canceled by the combined tuning and matching
capacitance.) The resultant curves (not shown) match those given
in Fig. 2A. (The slight displacement in Fig. 2B, i.e. of the maximum
resistance for zero separation is straightforwardly visualized as an
asymmetry in the Smith chart trajectories for the matching
schemes.)

The experiments we shall describe were performed on an NMR
scanner operating at 14.1 T (i.e. at a Larmor frequency of 600 MHz
for protons), with a sample of neat water in a 5 mm NMR tube,
filled to the height of the coil window (1.6 cm). With the efficiency
calculated from a nutation of p/2 in 6.8 ls with 21.4 W pulse
power delivered to the probe, we obtain an intrinsic damping con-
stant k = 171 s�1, corresponding to a predicted intrinsic damping
linewidth of 54.4 Hz. Pulse power measurements on two other
occasions gave the predicted intrinsic linewidth as 57.4 Hz and
45.0 Hz. The average of the three is 52.3 Hz; if the lowest value
of 45 Hz is discarded as spurious, the average becomes 54.9 Hz.
150 100 50 0 -50 -100 -150 
Frequency (Hz)

Fig. 3. Results of a representative damping experiment, performed with small
nutations (�p/2) as described in the text. In 2A are shown the proton free induction
signals of a neat water sample, at 14.1 T (600 MHz), with the NMR probe detuned
(above) and correctly tuned (below). The severe condition of damping with the
tuned coil is qualitatively visualized. The signal amplitudes are artificially equal-
ized; in fact that from the tuned coil is much larger. In 2B are shown the
corresponding spectroscopic lines after Fourier transformation of the free induction
signals, overlaid one upon the other, also with artificial equalization of the
amplitudes. The full linewidths at the peak half height, determined by the
spectrometer software, are 0.98 Hz and 44.85 Hz, giving a damping contribution
of about 44 Hz. An inset in the grid allows the damped linewidth to be read
approximately from the figure. The small sidebands may be due to phase
modulation caused by the spinning of the sample. Some small modulation at
60 Hz may be present.
3. Results and discussion

We have provisionally measured the intrinsic radiation damp-
ing constant, for protons in neat water at 14.1 T, by comparing line-
widths of signals acquired with and without detuning of the probe
[28], and by varying the electrical distance between preamp and
probe, by means of an inserted section of trombone (i.e. variable
length) transmission line. Practical details are given in the experi-
mental section. Fig. 3A gives the time course of the free induction
decay signals, without the trombone section, for the detuned probe
above, and the tuned below, in the regime of small nutations,
(# << p/2). The visual impression is that of a radical difference in
damping constant between the two. In Fig. 3B, we superpose the
spectroscopic lines resulting from Fourier transformation of the
free induction signals. The measured full widths at half height
(determined by the spectrometer software) were (in this instance)
44.85 Hz with correct tuning of the probe, and 0.97 Hz with the
probe detuned.

In Fig. 4 we present measurements of the damping constant as a
function of the length of the inserted trombone section. The inser-
tion loss of the preamp was measured on different occasions to lie
between �4.9 and �6.6 dB so that 6 dB line of Fig. 2A gives a rea-
sonable guide for expectation. We plot damping linewidth k0/p ver-
sus fractional wavelength, which, in accordance with Fig. 2 and the
Appendix A, is fit with a function of the form:

k0=p ¼ A sinð2cl� dÞ þ k=p ð6Þ

where the constant A scales with the preamp insertion loss, c is the
propagation constant (assumed lossless), l is the extension of the
trombone line in fractions of a wavelength, d is an empirical offset
factor, and the k/p is the intrinsic damping linewidth, for which we
obtain the value 65 Hz. The average predicted value (vide supra) of
52.3 Hz is 80% of this value, which is reasonable agreement, if not
excellent. The general close agreement of the fit and measured data
confirm our basic prediction concerning the variation of the line-
width, even though the measured excursions of linewidth are smal-
ler than the predicted values of Fig. 2. The return loss of the probe
was about �30 dB.

Still, reasonable numbers can be gotten with a filling factor. In
Fig. 5, for example, we show flux contours for a representative
model of an NMR probe with a saddle coil for which we numeri-
cally estimate g = 0.073, with a sample of 5 mm diameter, based
upon the partition of magnetic energies. Use of this filling factor
in the BP formula, with the measured Q value (equal to 225 with
source loading), predicts a proton linewidth of 40 Hz, which is
60% of the measured intrinsic damping. (With a filling factor of
unity as assumed by BP the result is about 550 Hz.)

But the larger question is, what constitutes the proper defini-
tion of filling factor? The common formula, using the partition of
energy between filled and empty regions, emerges from a simple
treatment of a partially filled inductor in the perturbation limit
[29] L ¼ l0ð1þ gvÞ

R
HðrÞ �HðrÞdV , with g given by the ratio of en-

ergy integrals, over the volume occupied by the load, and over all
space. This has also been used for microwave cavities in electron
spin resonance; and Feher [30] has given a detailed justification,
based upon a detection circuit in which a microwave bridge is
unbalanced by an impedance change at resonance, causing in turn
a change in reflected power or VSWR. We are unaware however, of
a parallel justification for inductive detection, notwithstanding the
use of a modified energy-based filling factor in a careful demon-
stration [31] of radiation damping in bird-cage resonators.

In contrast, the filling factor defined by Bloembergen–Pound is
specialized for inductive detection (with solenoid coils), and the
integrals are in fact not energy integrals, particularly in the case
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Fig. 5. Two-dimensional model of NMR probe with flux contours of shielded saddle
coil for estimation of the filling factor by energy partition, per the text. Axes labeled
in cm. A slice is shown perpendicular to the long axis. The saddle coil windows are
placed on a bolt circle of 1 cm diameter, have angular aperture of 2p/3 and angular
separation of p/3. The coil assembly sits inside a conductive shield of radius 2 cm,
and the coil windings are assumed round, with 0.1 mm radius. The sample, shown
in gray highlight is of 5 mm diameter. The flux calculations are done by conformal
mapping, as described in the text.
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Fig. 6. B1 field map of the probe from a one dimensional small angle gradient echo
image along the cylindrical axis of the probe. The field map (in blue) is in arbitrary
units, and was generated from the image by taking the square root of each image
point. The horizontal axis is approximate, and is given in mm, based upon the
known vertical height of the probe window. The red line is a fit to a top-hat profile
of perfect uniformity.
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of separate coils for transmission and reception. (A more recent
treatment of the filling factor in pulsed electron resonance [32] is
also close to that of BP.) Furthermore, the Zeeman energy balance
equation in BP leads to the correct damping equation only with the
stipulation of a filling factor defined as a ratio of volumes, not ener-
gies or voltages, and this interpretation (as noted) is also widely ac-
cepted. Therefore a case may be made for each of three separate
definitions – as a ratio of voltages, of energies, or of volumes – each
with factors to recommend it.

Another question is that of the homogeneity of the RF field. The
damping constant has been given here in simplified form, assum-
ing a uniform B1 field in the reception coil, and a uniform tip angle
for magnetization. The net emf for an arbitrary distribution of ini-
tial tip angles and local RF field strengths, is given directly by Eq.
(1), including the case of separate coils for excitation and reception
[22]. However, a solution of the general damping problem with
inhomogeneities of RF can only be given numerically, as illustrated
in a recent study of damping in toroidal coils [33], in which the
accuracy of a calculated filling factor was also considered to be
uncertain. We have in any case made a rough measurement of
the RF homogeneity in the axial direction, by performing a one
dimensional image of a long water sample in the coil. The resultant
field plot is given in Fig. 6. We estimate a standard deviation from
the mean of 11%, from which we conclude that nearly 90% of the
spins in the sample experience the same RF strength. This devia-
tion may account partly for the discrepancy between the measured
and calculated damping constant; but confirmation of this point
would require detailed simulation with the Bloch equations.

Parenthetically, the reflectivity of the preamp is also of interest,
since more reflective devices give weaker damping; also, highly
reflective preamplifiers are commonly used in array receivers for
medical imaging, to improve decoupling between array elements.
However, the great advantage of an absorptive preamp lies in its
stability, particularly since the input is derived from an antenna
with a sharp resonance, on either side of which the impedance
swiftly becomes reactive; under such conditions, a reflective pre-
amp is strongly prone to oscillate.

Finally there is the question of measuring g. Doty and co-work-
ers have given an elegant method [18] using the shift of resonant
frequencies upon introduction of a conductive sphere in the active
antenna volume. This cannot, however, be considered routine, as it
requires a specialized fixture, and detailed knowledge of the coil
geometry, to enable placement of the sphere in a region of zero
electric energy (inasmuch as that may be found).

The transceive efficiency, on the other hand, is unambiguously
defined, and readily measured. It is also in fact a local rather than
a global figure of merit, so that, in case of non-uniform fields, a dis-
tribution of values may be determined, using one of the many
imaging methods (now widely available on laboratory spectrome-
ters as well as medical scanners) to map the strength of the radio-
frequency B1 field. This is crucial for array receivers, in which the
signals received from different points in space vary strongly in
both magnitude and phase [23]. But in the common case of a
homogeneous B1 field, the determination of the efficiency still re-
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quires only routine measurements of pulsewidth and RF power,
without the need of introducing a sensor (often by blind reckoning)
into the midst of the radiofrequency detector.

Taken together, we believe these arguments align in favor of the
transceive efficiency as a figure of merit for the performance of
NMR probes, and as a replacement for the (still) widely used prod-
uct of filling factor the resonator Q, in future discussions radiation
damping. A step in this direction has been taken by Wald and co-
workers, who use a parameter they call the transmit efficiency
(B1 per unit current) to calculate the radiation damping field in a
feedback system [34]. Our recommendation of course excludes
the use of the filling factor concept that may be made in discussing
nature and origin of the free induction decay itself [35].

4. Methodology

4.1. Measurement procedures

Spectra were recorded on a narrow-bore Varian INOVA 14.1 T
NMR spectrometer, in the Structural NMR Laboratory at the Uni-
versity of California San Francisco, Mission Bay Campus, using
the proton channel of the manufacturer’s triple-tuned 13C, 15N,
1H 5 mm inverse detection probe, fitted with a z axis gradient
set, which was used for shimming. All experiments were a single
pulse and acquire, following some minutes of equilibration for
the sample to relax and come to temperature, which was set to
25 �C. For the damped experiments, the radiofrequency pulse
width was 1.0 ls, for the undamped 1 ls. The sweep width was
10 kHz, with a digital resolution of 0.1 Hz per point, zero filled to
0.05 Hz per point prior to Fourier transformation. The tuning of
the probe was determined by measuring the forward scattering
parameter S11 with an Agilent 5071 network analyzer, with refer-
ence planes and cable losses corrected using the manufacturer’s
electronic calibration fixture. The starting return loss of the probe
was adjusted �30 dB at 599.89 MHz, and the quality factor Q was
then measured 3 dB bandwidth points, giving the value 225 at crit-
ical coupling to the line.

Detuning of the probe (for measuring the undamped linewidth)
was monitored on the network analyzer. Typically the resonance
was tuned 20–30 MHz away from the Larmor frequency, and then
de-matched, resulting in a typical return loss of about �1 dB at
Larmor.

Prior to NMR measurements, the transmitter power delivered to
the probe was measured with an Agilent E 4443 spectrum ana-
lyzer, using calibrated cables and attenuators. The analyzer was
set up with large bandwidth, zero sweep, and video trigger. The
measured insertion loss of the test gear was typically �34.4 dB;
sometimes an extra 10 or 20 dB attenuator was included. A repre-
sentative analyzer reading with the scanner transmitter gain at its
maximum and 40.6 dB attenuation (including cables) was 2.5 dBm,
corresponding to a power of 20.5 W. No attempt to estimate the
transmission cable losses inside the probe.

The probe efficiency was then determined using a scanner soft-
ware routine to measure the duration s of a 2p nutation, from
which the familiar equation 2p ¼ 1

2 cB1s gives the strength of B1

in the laboratory frame. Since this is known to sometimes give spu-
rious results for strongly damping samples, a highly deuterated
sample was substituted. This caused a small change in the input
match, typically remeasured at �16 dB return loss, down from
�30 dB with the neat water sample. No attempt was made to re-
tune the probe, or to correct the linewidth calculations for the dif-
ference in reflected power, which would amount to about 2.5% of
the available power. The efficiency was calculated from Eq. (4)
above, using the power, measured as described above.

Measurement of the preamp input return loss was performed
on different occasions with preamp in situ and also removed from
the scanner. The reference plane for the scattering parameter S11

was set at the measurement cable’s end, using the network ana-
lyzer’s electronic calibration module. Prior to calibration, the input
sweep power was decreased from 0 dBm to �20 dBm, to avoid gain
compression.

The wavelength at 600 MHz inside the trombone line (General
Radio 874 LK 20 L, air articulated variable length coaxial line)
was verified to have its free space value of 0.5 m by measuring
the electrical length as determined by S11. For damping measure-
ments, the trombone was connected between probe and preamp,
and its spatial increments measured with a plastic ruler, by an
operator seated under the magnet, while another at the spectrom-
eter console oversaw the NMR measurements. Linewidths were
determined by the spectrometer software.

The sample was distilled, de-ionized, micropore-filtered water
in a standard 5 mm NMR tube, with no deuterium added for lock.
The scanner’s variable temperature unit was set to 25 �C. Although
the bulk of the data, including all those shown in Fig. 4, were col-
lected without sample spinning, the spinner was occasionally used,
e.g. for the spectra in Fig. 3, and the spinning rate, although not re-
corded, was probably about 26 Hz.

4.2. Calculations

The damping linewidth was calculated from Eq. using the for-
mula for the sample dipole moment l ¼ M0V ¼ 1=2c�hNMw

ðtanh �hx=2kTÞpr2hw � 10�3, where N is the Avogadro number,
Mw is the molarity of water protons (110), r is the inside radius
(in cm) of a 5 mm Wilmad NMR tube determined from the manu-
facturers outer diameter and wall thickness (0.43 mm) and hw is
the height of the probe window, 1.6 cm. The value at T = 298 K is
9.73 � 10�9. The multiplicative factor of 10�3 converts the volume
to liters, as required by the use of molarity.

Calculations of the flux contours (iso-contours of vector poten-
tial) for the filling factor were done by conformal mapping [36],
and the results numerically evaluated in Matlab™ scripts written
for the occasion. The magnetic fields were gotten by numerical
differentiation.

All circuit calculations were also done in Matlab™, using cus-
tom scripts, as noted. The underlying equations are given in the
Appendix A.
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Appendix A

For the convenience of the reader, we give here the fuller deri-
vations of some equations occurring in the text. For Eq. (1), we
write the time derivative of vector potential due to time varying
magnetization in a small volume dV0 located at r0:

_AðrÞ ¼ ðixl0=4pÞMðr0ÞdV 0 � rð1=r � r0Þ ðA1Þ

where we use negative time exponent for all electromagnetic quan-
tities. We then proceed to Faraday’s law for the magnetization in
the small volume:I

_A � ds ¼ ðixl0=4pÞdV 0
I

Mðr0Þ � rð1=r � r0Þ � ds; ðA2Þ
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where the line integral is taken about the coil perimeter, for which
we assume (for simplicity) a filamentary current. The observation
point r lies on the integration path. Noting that the vector potential
is related to the electric field by _A ¼ �E, plus rearrangement of the
vector triple product and application of the Biot-Savart law, fol-
lowed by integration over the primed volume, yields Eq. (1) of the
main text directly. No stipulation is placed upon the state of the
magnetization, so that the equation stands without reference to
the reciprocity principle or the linearity (or not) of the medium.
Since the factor (1/r � r0) is essentially the quasistatic Green’s func-
tion, we may replace it with a more general electromagnetic Green’s
function G(r, r0) and achieve somewhat greater generality. A specific
example of the free space Green’s function is given by Insko et al.
[37], although their calculation assumes a homogeneous medium
throughout all space.

The most direct means of calculating the dissipation scale factor
a in Fig. 2A is via the Kirchhoff mesh equations, starting the trans-
formed impedance of the preamp as seen by the probe:
Z0 ¼ Z0ð1þ q expð2iclÞ=ð1� q expð2iclÞ, where the reflection coeffi-
cient q is measured directly at the preamp input, and l is the length
of transmission line and c is the propagation constant, which we
assume lossless for simplicity. Then, the Fourier-transformed Kir-
chhoff mesh equations describing the circuit model of Fig. 1A are

ixLþ 1=ixC þ R �1=ixC

�1=ixC 1=ixC þ 1=ixCM þ Z0

� �
I1

I2

� �
¼

1
0

� �
ðA3Þ

where we have assumed a unit drive voltage from the sample. Then
the total dissipation is P ¼ jI1j2Rþ jI2j2ReðZ0Þ, where we have as-
sumed, the conversion to rms values. Note that ReðZ0Þ ¼ R0 ¼
Z0ð1� jqj2Þ=ð1� 2q cos 2clþ q2Þ, so that the inverse coupled resis-
tance has a sinusoidal dependence on the doubled electrical dis-
tance. This explains the sinusoidal form of the curves in Fig. 2A.
(The starting value at zero distance corresponds to maximum resis-
tance, which implies an arbitrary offset, of no fundamental impor-
tance, in the application to experimental data.)

We also calculate the transformed impedance values in Fig. 1C,
by a continued fraction:

Rþ R0 þ iX ¼ ðixLþ RÞ þ 1

ixC þ 1
Z þ 1

ixCM

: ðA4Þ
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